Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

spiral figure representing both finite and transfinite ordinal numbers
spiral figure representing both finite and transfinite ordinal numbers
This spiral diagram represents all ordinal numbers less than ωω. The first (outermost) turn of the spiral represents the finite ordinal numbers, which are the regular counting numbers starting with zero. As the spiral completes its first turn (at the top of the diagram), the ordinal numbers approach infinity, or more precisely ω, the first transfinite ordinal number (identified with the set of all counting numbers, a "countably infinite" set, the cardinality of which corresponds to the first transfinite cardinal number, called 0). The ordinal numbers continue from this point in the second turn of the spiral with ω + 1, ω + 2, and so forth. (A special ordinal arithmetic is defined to give meaning to these expressions, since the + symbol here does not represent the addition of two real numbers.) Halfway through the second turn of the spiral (at the bottom) the numbers approach ω + ω, or ω · 2. The ordinal numbers continue with ω · 2 + 1 through ω · 2 + ω = ω · 3 (three-quarters of the way through the second turn, or at the "9 o'clock" position), then through ω · 4, and so forth, up to ω · ω = ω2 at the top. (As with addition, the multiplication and exponentiation operations have definitions that work with transfinite numbers.) The ordinals continue in the third turn of the spiral with ω2 + 1 through ω2 + ω, then through ω2 + ω2 = ω2 · 2, up to ω2 · ω = ω3 at the top of the third turn. Continuing in this way, the ordinals increase by one power of ω for each turn of the spiral, approaching ωω in the middle of the diagram, as the spiral makes a countably infinite number of turns. This process can actually continue (not shown in this diagram) through and , and so on, approaching the first epsilon number, ε0. Each of these ordinals is still countable, and therefore equal in cardinality to ω. After uncountably many of these transfinite ordinals, the first uncountable ordinal is reached, corresponding to only the second infinite cardinal, . The identification of this larger cardinality with the cardinality of the set of real numbers can neither be proved nor disproved within the standard version of axiomatic set theory called Zermelo–Fraenkel set theory, whether or not one also assumes the axiom of choice.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
  • ...that as of April 2010 only 35 even numbers have been found that are not the sum of two primes which are each in a Twin Primes pair? ref
  • ...the Piphilology record (memorizing digits of Pi) is 70000 as of Mar 2015?
  • ...that people are significantly slower to identify the parity of zero than other whole numbers, regardless of age, language spoken, or whether the symbol or word for zero is used?
  • ...that Auction theory was successfully used in 1994 to sell FCC airwave spectrum, in a financial application of game theory?
  • ...properties of Pascal's triangle have application in many fields of mathematics including combinatorics, algebra, calculus and geometry?
  • ...work in artificial intelligence makes use of swarm intelligence, which has foundations in the behavioral examples found in nature of ants, birds, bees, and fish among others?
  • ...that statistical properties dictated by Benford's Law are used in auditing of financial accounts as one means of detecting fraud?
Showing 7 items out of 75

Selected article – show another


A pentagram colored to distinguish its line segments of different lengths. The four lengths are in golden ratio to one another
Image credit: User:PAR

In mathematics and the arts, two quantities are in the golden ratio if the ratio between the sum of those quantities and the larger one is the same as the ratio between the larger one and the smaller. The golden ratio is a mathematical constant, usually denoted by the Greek letter φ (phi).

Expressed algebraically, two quantities a and b (assuming ) are therefore in the golden ratio if

It follows from this property that φ satisfies the quadratic equation φ2 = φ + 1 and is therefore an algebraic irrational number, given by

which is approximately equal to 1.6180339887.

At least since the Renaissance, many artists and architects have proportioned their works to approximate the golden ratio—especially in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio—believing this proportion to be aesthetically pleasing. Mathematicians have studied the golden ratio because of its unique and interesting properties.

Other names frequently used for or closely related to the golden ratio are golden section (Latin: sectio aurea), golden mean, golden number, divine proportion (Italian: proporzionedivina), divine section (Latin: sectio divina), golden proportion, golden cut, and mean of Phidias. (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals

  1. ^ Coxeter et al. (1999), p. 30–31; Wenninger (1971), p. 65.